A newly identified deletion at the α-globin locus removing the promoter region of the α1 gene

J. POODT1, H. HAGENAARS1, H. MARTENS2, M.J. BERNSEN1, L.B.B. WALSH2, A.B. MULDER2, B. FELIX-SCHOLLAART3 and M.H.A. HERMANS1

In four related patients we have identified an up to now unknown α-globin allele that is characterized by a 970-bp deletion encompassing the entire α1-promoter region. From this newly identified (α-αα970) allele, most likely only the α1 gene is expressed.

Keywords: α-thalassemia, PCR; promoter region, deletion

The most common causes of α-thalassemia are deletions that remove a part, one or both of the functional α-globin genes. These deletions cause diminished expression of the α-globin protein, which may result in relatively low Hb and/or MCV values. We here report the identification of a new deletion in the α-globin gene that affects the α1 regulatory sequences. A 25-year-old pregnant woman presented with slightly decreased MCV value (76 fl) and normal erythrocyte value (4.0 x 1012/l). Iron deficiency was excluded. HPLC analysis indicated no Hb variants, and the presence of normal HbA2 concentration (3.0%) excluding β-thalassemias.

Materials and Methods

PCR based detection of α-thalassemias: Genomic DNA was isolated from 80-200 µl EDTA blood using GENTRA Capture column kit according to manufacturer’s instructions. Described PCR methods were used for detection of α1 and α2 genes (1-3), MED (1), SEA (4), 20.5 (1,4), 3.7 and 4.2 (1-3,5) deletions. With regard to the combined α1/–3.7 PCR, 13.5 µl of mix contained 1.3 M betaine, 1.3% DMSO, 200 mM dNTP, 1.75 mM MgCl2, 0.5 µM forward primer P55: 5’-GTC CAC CCC TTC CTT CCT CA (Genbank GI:14523048 position 32757-32776 and 36311-36330) and reverse primer 37RM: 5’-GGG GGG AGG CCC AAG GGG CAA GAA (position 38297-38320), DNA template (12 ng) and 1 U of Expand Taq Polymerase (Roche). Amplification conditions were: 92°C, 5:00; 30 times 98°C, 0:20; 64.5°C, 1:00; 72°C, 1:30; 31 cycles of 98°C, 0:20; 64.5°C, 1:00; 72°C, 1:30, followed by final extension at 72°C for 10 min (MJResearch PTC 200 thermocycler). PCR products were analyzed on a 1.5% agarose gel in 1 x TBE.

Sequence analysis: Primer P55 and a 5’ 4 nucleotides shortened 37RM, both 5’ extended with a M13 index were used for a PCR under conditions as described above with annealing temperature of 60°C instead of 64.5°C. After agarose gel electrophoresis the 1 kb band was cut out, purified (Qiagurr gel extraction kit; Qiagen) and diluted 1000 times. Two µl was used as a template for a nested PCR with M13 primers. PCR conditions were: 92°C, 5:00; 30 times 98°C, 0:30; 50°C, 0:30, 72°C 1:30 and final extension at 72°C for 10 min. PCR products were sequenced commercially (BaseClear Labservices Leiden).

Results and discussion

Analysis of genomic DNA from the index patient by PCR-based methods showed that α1 and α2 genes were present and that MED, SEA, 20.5, 3.7 and 4.2 deletions were absent. The presence of an additional band of 1 kb in the combined α1/–3.7 PCR (figure 1A) suggested a genomic polymorphism. In the presence of α1/–3.7 deletion and an intact α1 gene, the combined α1/–3.7 PCR generates 2 products: a wildtype α1 band of 2010 bp (primer P55 at primer binding site (PBS) II and primer 37RM) and a 1867 bp –3.7 band (primer P55 at PBS I and primer 37RM; figure 1B). Sequencing of the 1 kb PCR product revealed an up to now unknown α-globin allele (which we nominated α-αα970) characterized by a 970 bp deletion (36599 until 37568; sequence GI:14523048), together with a 3 bp insertion (Fig. 1C). Thus, in the α1/–3.7 PCR, amplification of the region between primer P55 PBS II and 37RM PBS had yielded the aberrant 1 kb band.

To investigate whether the deletion was germline or somatically acquired, DNA from both parents was analyzed in the combined α1/–3.7 PCR. Figure 1A shows the presence of the 1 kb band in the father’s, and not in the mother’s lane, strongly suggesting a germline transmission of the affected allele from the index patient’s father.

The deleted region encompasses the entire promoter region of the α1 gene, including the ‘CAAT’ and ‘ATA’ box, a number of putative SP1 sites (6), and 26 bp encoding the 5’ end of the mRNA. Thus the

Multidisciplinary Laboratory for Molecular Diagnostics1, and Laboratory for Clinical Chemistry and Hematology2, Jeroen Bosch Hospital, ‘s-Hertogenbosch. General practitioner, Vught, The Netherlands3

Corresponding author: M.H.A. Hermans, Multidisciplinary Laboratory for Molecular Diagnostics, Jeroen Bosch Hospital, P.O. Box 90153, 5200 ME ‘s-Hertogenbosch

affected α1 globin gene is very unlikely to be expressed. Theoretically, this newly identified α–α∆970 allele resembles both the –α3.7 and –α4.2 alleles in that in all three cases just one functional α-globin gene remains. However, the three alleles may differ with regard to transcription and translation because of different 5' and/or 3' untranslated regions (7).

So far, we have identified four patients that carry the α–α∆970/αα genotype: the index patient, her father, a brother and a sister. All of them exhibited MCV-values in the range of 73-78 fl. The ∆970 deletion may well be responsible for these slightly lowered MCV values.

Literatuur


